The auto industry is channeling billions into autonomous vehicle technology

The self-driving car industry is growing up. Valuations of self-driving car companies and private investment in these companies are exploding.  Bloomberg reports that private investment in self-driving and connected car companies in the second quarter of 2018 is more than the total private investment in this sector in the prior 4 years combined!  Morgan Stanley has raised its valuation of Waymo from 70 billion in 2017 to 175 billion.

But this is only the tip of the iceberg. Below the surface, a major restructuring of the auto industry is underway where self-driving car companies are emerging as the pivotal element in the strategies for future mobility. Over the past years, different approaches to integrating self-driving car technology into auto- and mobility companies have been tried, ranging from various types of acquisitions (GM-Cruise, Ford-ArgoAI, Aptiv(prior: Delphi)-Nutonomy, Intel-MobilEye) to partnerships (Bosch/Daimler, Daimler/BMW, Baidu/Apollo) and go-it alone strategies (Waymo, Zoox, Uber and many others).

Leaving aside Waymo, GM may have found a winning formula, which is increasingly copied by its competitors: When it acquired Cruise Automation in 2016, it allowed the new subsidiary to continue to operate in a highly autonomous mode, its growth and speed largely unencumbered by the rest of GM. Successful collaboration with GM around the electric Chevy Bolt brightened the prospects of both companies and initially led to a significant increase in in GM’s stock price (which since then has fizzled out). In 2018 Cruise attracted a 2.25 billion USD investment from Softbank’s Vision fund. Being able to attract outside investment (as well as employees through stock options in Cruise) while having close connections to the resources of the parent company should be an ideal position for Cruise to quickly shift from start-up/development mode to commercialization. At the same time Cruise is insulated from all concerns related to building legacy cars and from the headwinds that classical car companies will have to face from the revolutionary changes in the auto industry. Other auto makers seem to be copying GM’s strategy. Ford has created a self driving division (which includes ArgoAI) and will also be open for outside investment. Volkswagen seems to have been in talks to buy Aurora, but was rebuffed. Daimler who was an early leader in self-driving technology is relying on a partnership with Bosch but is also splitting the company into three separate parts (cars, trucks, mobility (which includes self-driving technology). This has the effect of insulating the less vulnerable parts of the business (trucks and mobility) from potentially dramatic changes in the auto industry. Only Toyota, which has always been late to the self-driving race has chosen a different path by investing 500 billion USD in Uber, which minimizes its ability to leverage the opportunities associated self-driving car technology.

The last 6 months have shown that the auto (and mobility) industry is now finding ways to channel billions of dollars into the commercialization of self-driving car technology. Given the extent of changes, the capital associated with these changes and the increased ability of translating advances in the technology into actual products and services (which don’t have to be full fledged drive-autonomously-anyhwere solutions but can be very targeted) it won’t take several years until we see the first real impact on the streets…

Self-driving vehicles: outlook for 2018

After the race for fully self-driving cars heated up in 2016, 2017 became a year with exciting developments – many billions of dollars changed hands for self-driving car related acquisitions(1) and many collaborations were started(2). But besides progress, 2017 also showed some limits: Tesla was plagued by defections from their SDC team and had to cancel their fully autonomous coast to coast test drive planned for the end of 2017 and shift the target date for their fully self-driving capability back by 2 years. Volvo effectively cancelled their planned Gothenburg self-driving car trials (by changing the scope to a test of driver assistance technologies).

Nevertheless an enormously important milestone for the adoption of self-driving cars has been reached in 2017: Waymo is now operating self-driving cars without test driver on public roads in Phoenix, Arizona. Five years ago we had expected this milestone to be reached around 2018. This unequivocally demonstrates to the world that self-driving cars are viable and that they can no longer be considered a technology that is half a decade or more away.

This milestone (and the multitude of achievements of the many actors involved up to the end of 2017) also change the dynamics of the global distributed innovation process around autonomous vehicles. It is beginning to shift from the typical chaotic process involving many different actors with little formal organization trying out different paths and approaches to a more mature process. The acquisitions we have seen in 2016 and 2017 are an indicator that the global innovation process is consolidating and getting closer to move from the early stage of an innovation process (called ‘fluid phase’ in innovation theory) to the ‘transitional phase’. This is a major step typically associated with deep structural changes in the innovation process. We may reach a peak in the number of companies competing to develop self-driving car technology in 2018 or 2019 before seeing a market shakeout thereafter.

For the auto-industry, 2018 will be a crucial year because the time is running out for most OEMs to ensure that they can weather the changes caused by self-driving cars and – maybe even more importantly – that they can identify, understand and profit from new opportunities. There can be no doubt that car sales will come under pressure in the early 2020ies as autonomous mobility services (both for local and long-distance travel) grab a significant share of the mobility market, consumers fundamentally change their car-buying behavior and some emerging markets adjust their traffic infrastructure policies to take advantage of self-driving car technology.

OEMS that have not yet committed to a serious self-driving car strategy risk their medium-term competitive position. With every year that passes, it will become more difficult to adjust to the changes coming to the auto industry. It is unlikely that OEMs will be able to offset losses in demand for privately owned cars by building self-driving cars and selling or leasing them to mobility service providers (or operating them themselves). When the industry gradually comes to accept the reality of shrinking demand for automobiles, it will become more and more difficult to adjust because profitability will fall rapidly and with it the ability to change. Several automakers are likely to fall into the Kodak trap: Kodak was the first company to develop a digital camera. It always understood digital cameras but it failed to reinvent its business model in time and then was unable to turn around the already sinking ship which was bleeding from all sides. The European, Korean and Japanese auto makers need to strongly accelerate their self-driving car activities if they want to survive the coming turmoils of the next decade. General Motors seems to be the only OEM which currently is well positioned in this space. It is pity that Daimler, one of the earliest pioneers of self-driving cars, appears to be content to mostly watch from the sidelines.

In 2018, we can expect another change in the maturing innovation process: The focus will start to move away from the core technical issues towards the implications for the automobile as a whole (its interior, exterior and structural design, its supporting and sales infrastructure etc.) and towards the business models associated with self-driving cars. There are many more use cases for self-driving technology than just ferrying people around; many of these use cases have strong services components which OEMs (or their challengers) need to embrace. 2018 may also be the year where players beyond the auto industry start to seriously consider the implications, opportunities and risks. Retail will be deeply affected by dramatically falling local distribution costs. In the next decade nany supermarkets will have to close their doors as products can be delivered conveniently (and with very customer-flexible timing) to the doorstep. Hospitals, care and emergency services will need to adjust to fewer traffic related injuries. Most industries will need to consider the implications and opportunities associated with significantly lower transportation costs (affecting both inbound and outbound logistics and possibly providing new product or service opportunities). Cities, countries, architects, construction firms need to start planning for a future where mobility is provisioned differently and where space and capacity requirements for transportation are changing. Railways and transportation companies need to consider the challenges which will be raised by autonomous mobility services providers. Self-driving cars and machines will also have major impact on construction and agriculture industries and provide new opportunities there.

2018 may also be the year where the opposition to self-driving cars finds their voice. While self-driving cars have enormous benefits they will eliminate many jobs (not just professional drivers but also in the auto industry and many other industries). Society needs to find ways to cope with the fundamental changes that result from software-based devices with capabilities which some call ‘artificial’ intelligence and we all need to consider in depth how the fabric of society will be impacted and what changes on the different subsystems of society will be necessary. This process should not be underestimated and requires a major, multi-disciplinary effort.

In 2018, every business, organization, political actor, and any forward-thinking individual should take the time to look beyond the technicalities of self-driving cars and carefully consider their implications, opportunities and risks!

Update: 2018-01-16: Removed a sentence stating that BMW seemed to have reduced the extents of its targets for autonomy in 2021.

(1) Acquisitions: Intel/MobilEye, Delphi/Nutonomy, Cruise Automation/Strobe, Ford/ArgoAI (Ford majority stakeholder), ArgoAI/Princeton Lightwave

2) Cooperations: Waymo with Lyft, Avis and others, Daimler/Bosch, Baidu/Apollo platform, Intel Alliance, Uber/Daimler

Autonomous vehicle roadmap: 2015-2030

Two and a half years ago I wrote a note on the various views about the paths for adopting self-driving vehicles. Since then, more and more signs point towards my ‘avalanche’ model, where the adoption of self-driving cars becomes a self-sustaining, accelerating process fueled by expectations of a fundamental transformation of the auto industry and major opportunities for profit.

As a thought exercise, I have sketched a hypothetical timeline which shows how this self-accelerating global innovation process could unfold. The purpose of the timeline is to show how autonomous vehicles could come into widespread use rather quickly and what kind of market and political forces could be involved. This is an extreme of many possible futures for self-driving cars:

2015 Google launches first short-range fully autonomous vehicle service in California at NASA Ames (not on public roads) and possibly in Mountain View (small scale pilot, limited to Google employees).

2015 The first auto makers (Daimler, Honda, Nissan?) announce major strategic initiatives and major investments to counter Googles’ threat and rapidly bring vehicles capable of full autonomy (Level 4) to the market.

2015 Car2Go (Daimler’s shared mobility service) announces a roadmap for autonomy in their car fleet.

2015 Automotive industry recognizes the implications of fully autonomous vehicles (transformation of mobility, significantly lowered worldwide demand). Analysts pound auto makers on their Level-4 autonomous vehicle strategy. Share prices begin a long decline.

2016 Google announces that their short range, limited-speed fully autonomous vehicle fleet will be built by Ford, Magna or others.

2016 China launches a major program to develop and deploy shared autonomous vehicles for local mobility. It recognizes that it can reduce infrastructure expenditure, jump-start their autonomous vehicle industry, reduce the ecological footprint of mobility etc.

2016 Google expands their short range autonomous vehicle service pilot to another US city that sees little rain and no snow, e.g. Las Vegas, NV or Sun City, AZ and starts their first overseas fleet.

2016 Price for semiconductor lasers used in LIDAR sensors falls below USD 150; this reduces the hardware/computing power costs for autonomous vehicles with 3D Lidars to below 10,000 USD.

2016 Transformative potential and benefits of autonomous vehicle technology are recognized widely. There is a bitter debate about the destruction of jobs.

2017 Several European countries have now adjusted their laws to allow the operation of fully autonomous vehicles on a national scale (not in international traffic).

2017 Autonomous long haul highway trucks start testing in the US, Europe or Japan.

2017 Rental car companies launch their own autonomous mobility inititiative.

2017 An international body for regulating autonomous vehicles is being formed in cooperation between the US, Europe and Japan.

2017 Google vehicles are now capable of driving in snow on pre-mapped routes.

2017 Automotive suppliers (Continental, Bosch, Valeo, or others) announce their own autonomous vehicles or special-purpose autonomous machines.

2017 Major road infrastructure projects are downsized because autonomous and connected vehicle technology have reduced the expectations on future transportation demands.

2017 Google moves their autonomous vehicle operations into a subsidiary which then merges with Uber and starts to roll out local autonomous vehicle mobility services in many more US cities.

2017 Singapore deploys the first autonomous bus for regular service. This is widely seen as a milestone for public transport and sends many transit corporations scrambling to update their strategies.

2017 The first countries mandate specific driving behavior for self-driving cars in certain driving situations.

2018 Car2Go starts to add autonomous vehicles to their fleet.

2018 The Google subsidiary/Uber merger rolls out autonomous vehicles internationally.

2018 Heavy investment into autonomous vehicle fleets and services based on autonomous vehicles. An almost unlimited amount of capital flows into startups and schemes. Countries compete trying to gain an advantage in the emerging new industries.

2018 Experience with autonomous vehicles shows that they are indeed much safer than the average human driver. People feel safe and comfortable in fully autonomous vehicles and there is no longer any question of user acceptance. No phenomenon similar to the ‘fear of flying’ can be found among users of self-driving cars.

2019 The Vienna Convention and European Laws are updated to allow the operation of fully autonomous vehicles.

2019 Autonomous vehicles now operate in over 50 cities worldwide.

2019 Rapid growth for autonomous trucks on specific routes. In many countries, truck drivers protest but this can only delay their adoption slightly.

2019 The first high-end consumer cars capable of fully autonomous driving on a large part of the national road network become available.

2020 The first countries introduce laws that prohibit bullying of autonomous vehicles (e.g. jumping in front of it to make it stop).

2020 Bleak outlook for automobile companies. Volume is down, consumers prepare for the transitioning to fully autonomous vehicles (which are not yet widely available for the consumer) or increasingly use/expect to use shared autonomous vehicle services. The fight for survival has begun: The auto industry has its “Kodak moment”.

2022 Prices for used cars decline. Too many people switch to shared autonomous vehicle schemes. Many others sell their old vehicles prematurely because they want to switch to the much safer fully autonomous models where they don’t need to drive if they don’t want to.

2022 The cost for autonomous vehicle hardware (sensors and computing power) has come down to 1500 USD.

2022 Mass transit companies increasingly rely on autonomous vehicles for transport. Transitioning the current workforce to a transit system based on autonomous vehicles is a major organizational and political challenge.

2022 Insurance rates favor operating cars in fully autonomous mode and prompt many people to stop driving on their own.

2023 Small autonomous buses are increasingly used for medium- and long distance trips. Trains have a hard time to compete on short to medium distances with autonomous buses.

2023 Most companies require that business trips with rental cars must occur in fully autonomous mode (for safety and productivity reasons).

2025 Fleets of autonomous vehicles now operate in most cities of developed nations.

2025 Automotive companies shut down more and more plants. Major automotive countries including Germany, Sweden and Japan desperately try to prop up their OEMs.

2030 Car ownership has declined dramatically. Only 20% of the US population still own a car (200 cars for 1000 people, today: 439 cars for 1000 people).  90% of all trips now happen in fully autonomous mode. Traffic accidents and fatalities have declined dramatically.

The race for leadership in autonomous cars is on: Volvo to deploy 100 self-driving cars by 2017

2013 has been a year with a lot of buzz around self-driving cars. While Google has been mostly silent about their progress, many other players have demonstrated prototypes of  autonomous cars (including Mercedes, Nissan) and announced intentions to bring more and more autonomous features to the market.

Now Volvo Cars has announced a project to deploy 100 highly autonomous cars in the Swedish city of Gothenburg by 2017. The cars will drive without the need for human supervision on selected roads in Gothenburg (including motorways, regular surface streets etc.). In autonomous mode their speed will be limited to a maximum of 70km/h. The cars will not yet be able to drive fully autonously; they may have to return control to the driver in certain areas or traffic situations (however the car will be able to handle all short-term traffic situations without help from a driver). The cars will use 360 degree sensors including cameras, Lidar and radar. More information about the project is available in a video by Volvo.

The project is very significant because of its scope, short timeline until implementation and because it involves key partners such as the City of Gothenburg and the Swedish government (Swedish Transport Administration and Swedish Transport Agency) who may have to remove any remaining legal road blocks.

With this project the race has begun to establish autonomous vehicle technology in real-live urban settings. Much as we have predicted, the cars’ autonomous operation will be limited to a very specific region: Only selected roads in withing Gothenburg which  are carefully mapped. The cars will rely on the mobile communications to receive map updates as needed. Thus Volvo will have to build an operations center which supports the autonomous operation on a day-to-day basis and issues updates to the cars for changes, construction zones etc.

Volvo Cars has reported losses in the first half of 2013 of about 90 million USD on revenues of almost 9 billion USD; with the global economic recovery this may have improved in the second half of 2013. Nevertheless, as one of the smaller car makers,  leadership in the autonomous space may be a good strategy for survival.

It is not clear, however, whether Volvo realizes that much of the growth in this technology will come from fleets of self-driving cars operating in limited areas. If Volvo really wants to profit from the growth opportunities in this area, they will have to re-think their model structure and introduce smaller, probably even electric cars aimed at short-range fleet operations. Being owned by Geely, a Chinese automotive company, Volvo could be in an ideal position to introduce the new paradigm of autonomous mobility to China (which would greatly benefit from fleets of short-range autonomous electric vehicles for urban, pollution-free mobility).

The project shows that autonomous technology has entered a new phase where real projects are being implemented which require the cooperation of car makers, technology providers, cities and governments. The British project in Milton Keynes is another example as well as the project to rethink urban mobility in Singapore (where the French company Induct are involved with their Navia autonomous shuttle as well as MIT).

Sources: Lindholmen Science Park, Volvo

Intelligent vehicle symposium showcases advances in driverless technology

Driverless technology researchers gathered at the beginning of June for the IEEE Intelligent Vehicles Symposium. With almost 200 presentations from more than 600 authors probably no aspect of this technology was left untouched.

This was not just an academic get-together: many of the papers involved major car makers (BMW, Toyota, Daimler, Renault, Volvo, Opel, Volkswagen, General Motors, Hyundai) or automotive suppliers (Delphi, Bosch).

The conference started with a reportedly captivating keynote presentation by Google’s Chris Urmson. Unfortunately, I have not been able to obtain more detailed information about its content. Please contact me if you were there!! Robert Bertini (Intelligent Transportation Systems Lab) gave another keynote on the environmental issues related to intelligent transportation which took the perspective beyond technical issues towards societal and environmental impacts.

It is hard to pick out the most interesting papers. But Daimler presented a new approach for improving stereo vision using a ‘Stixel’-based approach for object recognition. They claim that they are able to reduce false positives by a factor of 8 over the state of the art while reducing the computational costs by a factor of 10.

China  also seems to be moving ahead with driverless technology. Two papers (1, 2) were presented from participants of the annual Chinese driverless vehicle competition (‘ Future Challenge of Intelligent Vehicles’) funded by their National Nature Science Foundation.

Several papers focused on pedestrian modeling and recognition. Volkswagen described their approach to systematically drive an autonomous car at the vehicle’s handling limits. DLR presented an approach to apply autonomous vehicles localization technology to trains.

The symposium was located in Alcala de Henares, Spain. It also included demonstrations of autonomous vehicle systems.