Five guiding principles for autonomous vehicle policy

As self-driving car technology matures, politicians and regulators find themselves called to action. But the technology is a moving target and views about the technology’s path and impact vary widely. So how should policy makers approach the subject? Here are five guiding principles proposed by Marc Scribner,  a transportation and telecommunications policy specialist and research fellow at the Competitive Enterprise Institute. Scribner only discussed the principles briefly at a recent presentation at the Cato Institute. In the following I supplement each of his five bullet points with my interpretation:

1. Recognize and promote the huge potential benefits of self-driving cars

Policy makers need to familiarize themselves with the potential benefits of self-driving cars. First, they need to get the concepts right and clearly distinguish self-driving cars (which can drive without human supervision, even empty, and don’t need additional infrastructure) from other technologies such as driver assistance systems and connected cars. Connected cars and driver assistance systems are certainly also interesting topics but their benefits pale in comparison to the benefits of cars that drive themselves. Besides greatly reducing accidents, self-driving cars also bring individual motorized mobility to those who do not have a driver’s license – including people with disabilities and the elderly. They reduce energy consumption, simplify the introduction of alternative fuels and reduce the load on the road infrastructure.
Policy makers need to recognize that self-driving cars can solve or greatly reduce many longstanding problems. This is not a technology where a wait-and-see attitude is warranted. Politicians need to actively promote this technology. Of course, this does not mean that the technology’s risk should be ignored.

2. Reject the precautionary principle

Safety is a key concern and a key benefit of self-driving cars. There is good reason to expect mature self-driving cars to drive much safer than humans. They are equipped with 360 degree sensors, including cameras, radar and Lidar, are always alert, never tired, don’t drink and adopt a defensive, risk-minimizing driving strategy. But letting the first such cars drive by themselves on public streets is a difficult decision: what if anything goes wrong?
The application of the precautionary principle avoids this situation by requiring the developer to prove that the car is harmless. Unfortunately, proving that a self-driving car is safe is a hard problem and strict application of the principle could significantly delay the introduction of self-driving vehicles.
This weakness of the precautionary principle is well-known: There is the risk that erring on the side of caution when certifying self-driving cars prolongs the current carnage on our  on our roads. Unfortunately, we don’t have the luxury to delay a well-functioning self-driving car for a few more years to be extra-sure that everything is perfect when 33,000 people die in traffic accidents per year in the US alone and more than 1 million per year worldwide.
As much as it is not acceptable to let first prototypes roam the streets unsupervised it is not acceptable to delay and delay just to be on the safe side. A middle ground must be found. This is not an easy task for policy makers but one on which lives depend.

3. Don’t presume to know how the technology and law will evolve

Will autonomous vehicle technology gradually evolve from driver assistance systems? Will they first appear on the highway or in low-speed local settings? What new business models will emerge and what role will machines play? Will the US be the first to legalize fully autonomous vehicles or does the Vienna Convention on road traffic really prevent many European Countries from adopting self-driving vehicles? There are so many paths that this technology can take, so many changes in many different areas of business and society, so many proponents and possibly opponents that it is hard to be right about the path of technology and – consequently – of law. It is very dangerous to assume that the technology will evolve in one way, then regulate for this situation and subsequently find that the technology evolves very differently.

4. Let the innovators innovate

This section was originally entitled ‘minimize legislative and regulatory intervention’ and included the goal to give the innovators the space to innovate. But here I differ with Scribner: Unfortunately, transportation law is so much based on the concept of vehicles driven by humans that many laws do need to be changed. Current traffic laws contain so many elements that inhibit progress for this new and safer technology. Autonomous vehicles change the concept of what a car is and the laws need to be updated accordingly. Otherwise innovators will find it hard to make progress. This is a task that should be started immediately – before fully autonomous vehicles are ready for public roads.

5. Preserve technology neutrality

Laws and regulations should be technologically neutral. As much possible, they should avoid favoring a specific technical approach.

Autonomous vehicle roadmap: 2015-2030

Two and a half years ago I wrote a note on the various views about the paths for adopting self-driving vehicles. Since then, more and more signs point towards my ‘avalanche’ model, where the adoption of self-driving cars becomes a self-sustaining, accelerating process fueled by expectations of a fundamental transformation of the auto industry and major opportunities for profit.

As a thought exercise, I have sketched a hypothetical timeline which shows how this self-accelerating global innovation process could unfold. The purpose of the timeline is to show how autonomous vehicles could come into widespread use rather quickly and what kind of market and political forces could be involved. This is an extreme of many possible futures for self-driving cars:

2015 Google launches first short-range fully autonomous vehicle service in California at NASA Ames (not on public roads) and possibly in Mountain View (small scale pilot, limited to Google employees).

2015 The first auto makers (Daimler, Honda, Nissan?) announce major strategic initiatives and major investments to counter Googles’ threat and rapidly bring vehicles capable of full autonomy (Level 4) to the market.

2015 Car2Go (Daimler’s shared mobility service) announces a roadmap for autonomy in their car fleet.

2015 Automotive industry recognizes the implications of fully autonomous vehicles (transformation of mobility, significantly lowered worldwide demand). Analysts pound auto makers on their Level-4 autonomous vehicle strategy. Share prices begin a long decline.

2016 Google announces that their short range, limited-speed fully autonomous vehicle fleet will be built by Ford, Magna or others.

2016 China launches a major program to develop and deploy shared autonomous vehicles for local mobility. It recognizes that it can reduce infrastructure expenditure, jump-start their autonomous vehicle industry, reduce the ecological footprint of mobility etc.

2016 Google expands their short range autonomous vehicle service pilot to another US city that sees little rain and no snow, e.g. Las Vegas, NV or Sun City, AZ and starts their first overseas fleet.

2016 Price for semiconductor lasers used in LIDAR sensors falls below USD 150; this reduces the hardware/computing power costs for autonomous vehicles with 3D Lidars to below 10,000 USD.

2016 Transformative potential and benefits of autonomous vehicle technology are recognized widely. There is a bitter debate about the destruction of jobs.

2017 Several European countries have now adjusted their laws to allow the operation of fully autonomous vehicles on a national scale (not in international traffic).

2017 Autonomous long haul highway trucks start testing in the US, Europe or Japan.

2017 Rental car companies launch their own autonomous mobility inititiative.

2017 An international body for regulating autonomous vehicles is being formed in cooperation between the US, Europe and Japan.

2017 Google vehicles are now capable of driving in snow on pre-mapped routes.

2017 Automotive suppliers (Continental, Bosch, Valeo, or others) announce their own autonomous vehicles or special-purpose autonomous machines.

2017 Major road infrastructure projects are downsized because autonomous and connected vehicle technology have reduced the expectations on future transportation demands.

2017 Google moves their autonomous vehicle operations into a subsidiary which then merges with Uber and starts to roll out local autonomous vehicle mobility services in many more US cities.

2017 Singapore deploys the first autonomous bus for regular service. This is widely seen as a milestone for public transport and sends many transit corporations scrambling to update their strategies.

2017 The first countries mandate specific driving behavior for self-driving cars in certain driving situations.

2018 Car2Go starts to add autonomous vehicles to their fleet.

2018 The Google subsidiary/Uber merger rolls out autonomous vehicles internationally.

2018 Heavy investment into autonomous vehicle fleets and services based on autonomous vehicles. An almost unlimited amount of capital flows into startups and schemes. Countries compete trying to gain an advantage in the emerging new industries.

2018 Experience with autonomous vehicles shows that they are indeed much safer than the average human driver. People feel safe and comfortable in fully autonomous vehicles and there is no longer any question of user acceptance. No phenomenon similar to the ‘fear of flying’ can be found among users of self-driving cars.

2019 The Vienna Convention and European Laws are updated to allow the operation of fully autonomous vehicles.

2019 Autonomous vehicles now operate in over 50 cities worldwide.

2019 Rapid growth for autonomous trucks on specific routes. In many countries, truck drivers protest but this can only delay their adoption slightly.

2019 The first high-end consumer cars capable of fully autonomous driving on a large part of the national road network become available.

2020 The first countries introduce laws that prohibit bullying of autonomous vehicles (e.g. jumping in front of it to make it stop).

2020 Bleak outlook for automobile companies. Volume is down, consumers prepare for the transitioning to fully autonomous vehicles (which are not yet widely available for the consumer) or increasingly use/expect to use shared autonomous vehicle services. The fight for survival has begun: The auto industry has its “Kodak moment”.

2022 Prices for used cars decline. Too many people switch to shared autonomous vehicle schemes. Many others sell their old vehicles prematurely because they want to switch to the much safer fully autonomous models where they don’t need to drive if they don’t want to.

2022 The cost for autonomous vehicle hardware (sensors and computing power) has come down to 1500 USD.

2022 Mass transit companies increasingly rely on autonomous vehicles for transport. Transitioning the current workforce to a transit system based on autonomous vehicles is a major organizational and political challenge.

2022 Insurance rates favor operating cars in fully autonomous mode and prompt many people to stop driving on their own.

2023 Small autonomous buses are increasingly used for medium- and long distance trips. Trains have a hard time to compete on short to medium distances with autonomous buses.

2023 Most companies require that business trips with rental cars must occur in fully autonomous mode (for safety and productivity reasons).

2025 Fleets of autonomous vehicles now operate in most cities of developed nations.

2025 Automotive companies shut down more and more plants. Major automotive countries including Germany, Sweden and Japan desperately try to prop up their OEMs.

2030 Car ownership has declined dramatically. Only 20% of the US population still own a car (200 cars for 1000 people, today: 439 cars for 1000 people).  90% of all trips now happen in fully autonomous mode. Traffic accidents and fatalities have declined dramatically.

Passenger cars in 2040: New Shell & Prognos study fails to consider the impact of autonomous vehicles

Since 1958 Shell has been publishing scenario analyses of the German passenger vehicle market. Looking 25 years into the future until 2040, Shell and Prognos have just released a detailed analysis of the evolution of the stock of passenger cars, travel patterns and fuel consumption for this time frame. Although they look at an alternative scenario with an accelerated switch to zero emission vehicles, they conclude that “no revolution” is likely to occur until 2040. The only revolution they consider are engine-related changes: in neither scenario will electric or other alternative engine types overtake the internal combustion engine.

Unfortunately, their analysis completely overlooks the emergence of autonomous vehicles. This is more than an unfortunate oversight, because even a cursory analysis should show that fully autonomous vehicles could greatly change travel patterns: Significant parts of the population that currently don’t have access to individual motorized mobility could considerably increase the number of miles traveled. Autonomous mobility services could reduce car ownership and the stock of cars and could accelerate the adoption of electric vehicles for local trips.

How can this happen to a Shell – a company that has pioneered scenario analysis and has always emphasized that – rather than extrapolating the current situation into the future – scenario analysis aims to detect and think about alternative futures? How can their analysis miss a potential game changer for the auto industry?

For more than a year the media have bombarded the public with news about autonomous cars. There can be no doubt that the technology has made enormous progress in the last 10 years and continues to make progress at a rapid pace. No professional who looks at long-term socio-economic trends related to mobility can ignore the potential implications of autonomous vehicles any longer. There is no excuse! Of course, there is room for scepticism about the speed at which the technology will mature. But there is no room for scepticism about the speed at which self-driving cars will be adopted once they are mature (a little careful scenario analysis which looks at business models and transformative aspects of fully autonomous vehicles will quickly yield this insight…).